Abstract

Based on the thermodynamic concept of a reservoir, we investigate a computational model for interaction with unresolved degrees of freedom (a thermal bath). We assume that a finite restricted system can be modelled by a generalized canonical ensemble, described by a density which is a smooth function of the energy of the restricted system. A thermostat is constructed to continuously perturb the resolved dynamics, while leaving the desired equilibrium distribution invariant. We build on a thermostatting framework developed and tested in the setting of molecular dynamics, using stochastic perturbations to control (and stabilize) the invariant measure. We also apply these techniques in the setting of a simplified point vortex flow on a disc, in which a modified Gibbs distribution (modelling a finite, rather than infinite, bath of weak vortices) provides a regularizing formulation for restricted system dynamics. Numerical experiments, effectively replacing many vortices by a few artificial degrees of freedom, are in excellent agreement with the two-scale simulations of Bühler [Phys. Fluids, 14 (2002), pp. 2139–2149].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.