Abstract

ABSTRACTElectrospinning allows the production of ultrafine nanofibers through the stretching of a charged polymer jet with an external electrostatic field. In this study, we derived a simplified and accurate model relating the processing parameters, including the solution volumetric flow rate (Q), the applied electric field (E), and the polymer concentration, to the final fiber diameter. The model takes into consideration the jet behavior starting at the stable region and moving to the bending instability region. We validated the model experimentally by performing the electrospinning process with a polyacrylonitrile/N,N‐dimethylformamide solution with different ranges of concentrations (8–11 wt %), Qs (900–1320 μL/h), and Es (88,889–113,889 V/m). The final fiber diameter was measured with scanning electron microscopy. The model predicted the fiber diameter with a relative error of less than 10%. Moreover, a 30% increase in Q resulted in a 15% increase in the fiber diameter, whereas a 30% increase in E resulted in a 14% decrease in the fiber diameter. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44112.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.