Abstract

Ground-supported unanchored liquid-storage cylindrical tanks, when subjected to strong seismic loading may exhibit uplifting of their bottom plate, which has significant effects on their dynamic behavior and strength. Those effects mainly concern: (a) the increase of axial (meridional) compression at the tank base, resulting in premature buckling in the form of elephant’s foot and (b) the significant plastic deformation at the vicinity of the welded connection between the tank shell and the bottom plate that may cause failure of the welded connection due to fracture and fatigue. The present study focuses on base uplifting mechanics and tank performance with respect to the shell/plate welded connection through a numerical two-step methodology: (1) a detailed finite element shell model of the tank for incremental static analysis, capable of describing the state of stress and deformation at different levels of loading and (2) a simplified modeling of the tank as a spring-mass system for dynamic analysis, enhanced by a nonlinear spring at its base to account for the effects of uplifting. Two cylindrical liquid storage tanks of different aspect ratios are modeled and analyzed in terms of local performance of the welded connection. The results are aimed at better understanding of tank uplifting mechanics and motivating possible amendments in existing seismic design provisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.