Abstract
In order to investigate the simplified method for the fire resistance analysis on the steel staggered-truss system (SSTS) under the lateral force, a three-dimensional (3-D) model, a plane cooperative (PC) model and a planar model are established by the finite element method respectively. The effect of slabs is considered in the models. The mechanical performances of SSTS at elevated temperature were analyzed and the interaction characteristics between the truss exposed to fire and its adjacent trusses are studied. The results obtained by the above different models were comparatively investigated to explore the applicability of different models for the analysis of SSTS under lateral force and high temperature. The results indicate that the adjacent trusses in SSTS under lateral force could keep good coordination at elevated temperature. When applied to the analysis for SSTS under lateral force at elevated temperature, the 3-D model is the best in accord with actual situation while it is complicated and the computation is time-consuming, and the planar model is simple and convenient while it may cause some considerable deviation, and the PC model could simulate the interactions between adjacent frame truss and the truss under fire effectively in the SSTS, whose result is in the propinquity of 3-D model and has an acceptable accuracy. The PC model without rigidly hinged bars (RHB) on the fire floor is recommended to analyze the fire response behaviors of staggered-steel truss system under lateral force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Image, Graphics and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.