Abstract

In vitro experiments in bioelectromagnetics frequently require the determination of specific absorption rate (SAR) within a layer of cells on the bottom of a culture flask when the SAR has rapid spatial variation both horizontally within the cell layer and vertically in the medium bathing the cells. This problem has only recently been treated in the literature; and it is here approached differently for another irradiation system. It is shown that a simple two-dimensional frequency-domain guided-wave treatment yields results qualitatively comparable to those of more computationally intensive three-dimensional time-domain free-field scattering treatments. The problem of inferring local SARs from temperature-vs.-time curves is shown to be seriously confounded by thermal diffusion; and specific analytic and numerical results are presented to aid in understanding this effect. A novel experimental technique is introduced for measuring millikelvin temperature offsets with subsecond resolution, and illustrative experimental data are presented. Finally, present experimental and theoretical uncertainties are considered; and it is pessimistically asserted that, in a culture flask where spatial SAR variation is rapid, point SAR measurements by thermal methods may be in error by as much as +/- 3 dB. More reliable thermal determinations will require extreme care, challenging technological innovations, or both.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.