Abstract

The lattice Boltzmann method (LBM) has gained increasing popularity in incompressible viscous flow simulations, but it uses many distribution functions (far more than the flow variables) and is often memory demanding. This disadvantage was overcome by a recent approach that solves the more actual macroscopic equations obtained through Taylor series expansion analysis of the lattice Boltzmann equations [Lu etal., J. Comput. Phys. 415, 109546 (2020)JCTPAH0021-999110.1016/j.jcp.2020.109546]. The key is to keep some small additional terms (SATs) to stabilize the numerical solution of the weakly compressible Navier-Stokes equations. However, there are many SATs that complicate the implementation of their method. Based on some analyses and numerous tests, we ultimately pinpoint two essential ingredients for stable simulations: (1) suitable density (pressure) diffusion added to the continuity equation and (2) proper numerical dissipation related to the velocity divergence added to the momentum equations. Then we propose a simplified method that is not only easier to implement but noticeably faster than the original method and the LBM. It contains much simpler SATs that only involve the density (pressure) derivatives, and it requires no intermediate steps or variables. As well, it is extended for thermal flows with small temperature variations and for two-phase flows with uniform density and viscosity. Several test cases, including some two-phase problems under two-dimensional, axisymmetric, and three-dimensional geometries, are presented to demonstrate its capability. This work may help pave the way for the simplest simulation of incompressible viscous flows on collocated grids based on the artificial compressibility methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.