Abstract
The objective of this work is to compare the quality of various diesel fuels using a normal engine and carrying out the test under the actual operating conditions of the engine, unlike the conventional test methods that uses standard test conditions. The standard test conditions involve the running of the diesel engine test rig at a speed of around 800 rpm, which is not the condition when the fuel is actually being used, as the operational speed of commercial engines is around 1500–2000 rpm. Also the non-engine based quality rating methods are not economically liable and are inaccurate as they depend too much on the chemical nature of the fuel. So, the objective of this work is to develop a generalized quality rating procedure with less number of parameters, with a simpler and cheaper method compared to other available methods. A single cylinder diesel engine was used to study the ignition quality of various reference fuels of known Cetane numbers. A relatively simple and compact setup was used, by modifying the existing test rig. The inlet manifold was incorporated with an airflow control valve so that the quantity of air let into the cylinder can be varied. The exhaust gas manifold was modified to enable easier observation of the exhaust gas. The single cylinder diesel engine was made to run at two distinct conditions, namely, the normal and white-puff / critical condition, with the reference fuels of known cetane numbers. The quantity of air available for the fuel to combust is the only difference between the two conditions. The air-fuel ratio of each fuel under both the conditions was continuously monitored. A correlation was developed between the critical air-fuel ratios and the corresponding Cetane numbers. From this correlation, a test fuel can be rated easily by finding the air-fuel ratio, by running it in the same engine at an identical load, at an instant when the “white puff” is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.