Abstract

We describe a simple and rapid method to fabricate superhydrophobic textured steel surface with excellent anti-corrosion and tribological properties on S45C steel substrate. The steel substrate was firstly ground using SiC sandpapers, and then polished using diamond paste to remove scratches. The polished steel was subsequently etched in a mixture of HF and H2O2 solution for 30 s at room temperature to obtain the textured steel surface with island-like protrusions, micro-pits, and nano-flakes. Meanwhile, to investigate the formation mechanism of the multiscale structures, the polished steel was immersed in a 3 wt% Nital solution for 5 s to observe the metallographic structures. The multiscale structures, along with low-surface-energy molecules, led to the steel surface that displayed superhydrophobicity with the contact angle of 158 ± 2° and the sliding angle of 3 ± 1°. The chemical stability and potentiodynamic polarization test indicated that the as-prepared superhydrophobic surface had excellent corrosion resistance that can provide effective protection for the steel substrate. The tribological test showed that the friction coefficient of the superhydrophobic surface maintained 0.11 within 6000 s and its superhydrophobicity had no obvious decrease after the abrasion test. The theoretical mechanism for the excellent anti-corrosion and tribological properties on the superhydrophobic surface were also analyzed respectively. The advantages of facile production, anti-corrosion, and tribological properties for the superhydrophobic steel surface make it to be a good candidate in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call