Abstract

This paper describes a simplified mesh generation technique that is based on the finite element method of calculation of beam-shaping diffractive optical elements (DOEs). The mesh generation technique uses the inherent symmetry of the incident beam to generate a mesh. Using the meshes so generated, DOEs that convert a Gaussian intensity beam to one of a specified shape, are calculated. Simulations of the results of such beam-shaping elements will be presented. Such elements have uses in industrial and medical applications where both the shape as well as the intensity distribution on the material that is to be processed is very important. For example, in industrial applications the beam may be used to uniformly heat up a specific area in which case the intensity has to be uniform across the beam. The Gaussian intensity variation of a laser has to be converted to a flat-top beam in order to achieve this. To reiterate, beam shaping refers to changing both the intensity distribution and the shape of the beam. Experimental results of the fabricated gratings will also be presented. These results will include experimental data on the method of additive lithography which can be used to improve the efficiency of DOEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.