Abstract
Motivated by the importance of hardware implementation in practical turbo decoders, a simplified, yet effective, <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$n$</tex></formula> -input <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\max^{\ast}$</tex> </formula> approximation algorithm is proposed with the aim being its efficient implementation for very low-complexity turbo decoder hardware architectures. The simplification is obtained using an appropriate digital circuit for finding the first two maximum values in a set of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$n$</tex></formula> data that embeds the computation of a correction term. Various implementation results show that the proposed architecture is simpler by 30%, on average, than the constant logarithmic-maximum a posteriori (Log-MAP) one, in terms of chip area with the same delay. This comes at the expense of very small performance degradation, in the order of 0.1 dB for up to moderate bit error rates, e.g., <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$10^{-5}$</tex></formula> , assuming binary turbo codes. However, when applying scaling to the extrinsic information, the proposed algorithm achieves almost identical Log-MAP turbo code performance for both binary and double-binary turbo codes, without increasing noticeably the implementation complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.