Abstract

Abstract. The paper presents a simplification of the Kalman smoother that can be run as a post-processing step using only minimal stored information from a Kalman filter analysis, which is intended for use with large model products such as the reanalyses of the Earth system. A simple decay assumption is applied to cross-time error covariances, and we show how the resulting equations relate formally to the fixed-lag Kalman smoother and how they can be solved to give a smoother analysis along with an uncertainty estimate. The method is demonstrated in the Lorenz (1963) idealised system which is applied to both an extended and ensemble Kalman filter and smoother. In each case, the root mean square errors (RMSEs) against the truth, for both assimilated and unassimilated (independent) data, of the new smoother analyses are substantially smaller than for the original filter analyses, while being larger than for the full smoother solution. Up to 70 % (40 %) of the full smoother error reduction, with respect to the extended (ensemble) filters, respectively, is achieved. The uncertainties derived for the new smoother also agree remarkably well with the actual RMSE values throughout the assimilation period. The ability to run this smoother very efficiently as a post-processor should allow it to be useful for really large model reanalysis products and especially for ensemble products that are already being developed by various operational centres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.