Abstract
The phase problem is a persistent bottleneck that impedes the structure-determination pipeline and must be solved to obtain atomic resolution crystal structures of macromolecules. Although molecular replacement has become the predominant method of solving the phase problem, many scenarios still exist in which experimental phasing is needed. Here, a proof-of-concept study is presented that shows the efficacy of using tetrabromoterephthalic acid (B4C) as an experimental phasing compound. Incorporating B4C into the crystal lattice using co-crystallization, the crystal structure of hen egg-white lysozyme was solved using MAD phasing. The strong anomalous signal generated by its four Br atoms coupled with its compatibility with commonly used crystallization reagents render B4C an effective experimental phasing compound that can be used to overcome the phase problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section F, Structural biology communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.