Abstract

This paper describes simplified methods to estimate the elastic–plastic J-integral, J, related to the crack growth rate in elastic–plastic situations. Estimating this parameter under general conditions entails costly detailed elastic–plastic FEA modelling of the cracked component concerned, and thus, some simplified methods that do not involve complex numerical calculations are required, particularly, for use in situations where plastic strains are produced by secondary stresses. For mechanical primary stresses, the reference stress method may provide reasonable estimates of J. The direct use of the reference stress method for secondary stresses, however, has not yet been fully established. The method presented in this paper is based on the enhanced reference stress method, which leads to more accurate estimates of J than the original method, and elastic follow-up factors for approximating the inelastic response of the component from the elastic FEA. The present method has been validated by performing detailed elastic–plastic FEA of cracked plates subjected to displacement-controlled loading and of a circumferentially cracked cylinder subjected to thermal loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.