Abstract

Based on large-signal simulations, this article proposes a simplified method to emulate the active load modulation between the carrier and peaking transistors in a Doherty power amplifier (DPA) design. In contrast to the conventional load–pull method, the proposed method contributes to emulating the active load modulation between the load-modulated transistors with considering their nonlinear interaction. It offers the advantages of predicting the real-world performance of the load-modulated transistors and providing the optimum load-modulation trajectories to be synthesized in a DPA design. To verify the proposed method, a two-way millimeter-wave (mmWave) gallium nitride (GaN) microwave monolithic integrated circuit (MMIC) DPA is designed from 25.5 to 27 GHz. The measured results show that the realized MMIC DPA achieves power-added efficiency (PAE) higher than 30% at saturation, 27% at 6-dB back-off, and 21.5% at 8-dB back-off, with a saturated output power higher than 31.4 dBm across the band. When tested using a 400-MHz modulated signal with digital predistortion (DPD), the MMIC DPA shows adjacent channel power ratio (ACPR) levels better than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$-$</tex-math> </inline-formula> 40 dBc over the band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call