Abstract
Embedding methods specifically designed to treat large molecules with bulky ligands or in polar solvents are used to describe the electronic structure of point defects in the covalently bonded solids SiO2, Si3N4, and Si2N2O. The mechanical relaxation of the lattice around a given defect, in particular an anion vacancy or interstitial, is described using the ONIOM approach where the system is partitioned in two regions, the local defect treated at the gradient corrected DFT level, and the surrounding matrix treated with a semiempirical Hamiltonian. In this way clusters of 100 atoms and more are used to describe a portion of the solid of 10–15 Å of diameter. The long-range lattice polarization induced by a charged defect, a charged oxygen vacancy or a proton bound to O or N atoms, is estimated by means of the isodensity polarized continuum model, IPCM, and compared with the approximate Born’s formula. The two simplified embedding schemes provide a simple way to improve cluster models of neutral and charged defects in covalent materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.