Abstract

In this paper, a simplified double-integral sliding-mode control method for pulse-width-modulated dc-ac buck conversion is introduced. The control equation is derived based on the equivalent control method, in which the control-oriented model is developed using the averaged dynamics of the power converter in continuous conduction mode. In contrast with the conventional sliding-mode control schemes, the complexity of adding a capacitor current sensor, variable ramp voltage, and other relevant components is avoided. Furthermore, the control equation is translated into a simple electronic circuit with minimal added components, which reduces the practical implementation cost. The proposed control method rejects large disturbances, tracks the reference signal, and maintains a constant switching frequency. Systematic design procedure, control parameters selection, and stability conditions are presented. The design methodology is verified via simulating the proposed control circuit using Simscape Electrical in MATLAB. The control method is also compared with the conventional double-integral sliding-mode control scheme under load disturbances. The results show that the simplified control approach provides a fast transient response and robust tracking performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call