Abstract

Conduction has been studied in ultrathin nitrided oxide, re-oxidized nitrided oxide, and nitrogen-annealed nitrided oxide film capacitors in which the nitridation step was performed by a low-partial-pressure nitridation technique. Results indicate that, as well as some degree of barrier lowering due to the build-up of nitrogen at the injecting interface, a trap-assisted mechanism could be responsible for the enhanced conduction exhibited by the nitrided oxide devices. A simplified closed-form trap-assisted tunneling model is employed that produces a fit to the data with a trap depth of 2.1 eV. The difference between this trap model and a model requiring numerical integration was negligibly small (∼2%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.