Abstract

AbstractRecently, a novel approach with excellent performance based on the concept of the characteristic infiltration time, the characteristic time method (CTM), is proposed to infer soil sorptivity (S) and saturated hydraulic conductivity (Ks) from one‐dimensional (1D) cumulative infiltration. The current work provides a simplified version of the CTM, called the SCTM, by eliminating the necessity of the iteration method used in CTM and providing a similar accuracy as the original method when estimating S and Ks. We used both synthetic and experimental data to evaluate SCTM in comparison with the original CTM, as well as Sharma (SH) and curve‐fitting methods. In the case of synthetically simulated infiltration experiments, the predicted S and Ks values showed an excellent agreement with their theoretical values, with Nash–Sutcliffe (E) values higher than 0.9 and RMSE values of 0.11 cm h1/2 and 0.35 cm h–1, respectively. In the case of experimental data, the SCTM showed E values larger than 0.73 and RMSE values of 0.64 cm h1/2 and 0.35 cm h–1, respectively. The accuracy and the robustness of SCTM was comparable with the original CTM when applied on synthetic infiltration curves as well as on experimental data. Similar to the original CTM, the simplified approach also does not require the knowledge of the time validity, which is needed when using approaches based on Philip's infiltration theory. The method is applicable to infiltrations with durations from 15 min to 24 h. The supplemental material presents the calculation of S and Ks using SCTM in an Excel spreadsheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.