Abstract

Cold-formed steel built-up section beams are commonly employed in cold-formed steel framing owing to their excellent mechanical performance. In order to develop a simplified approach for obtaining the flexural moment capacity of built-up section beams, both experimental study and numerical analysis on the flexural behavior of cold-formed steel built-up I-section and box section beams under flexural load were carried out in this study. The I-section beams are assembled from two back-to-back cold-formed steel lipped channels, and the box section beams consist of a cold-formed steel plain channel overlapping a lipped channel. First, four-point bending tests were performed on 30 simply supported specimens having 10 different configurations, and the moment capacities and failure modes of built-up section beams at ultimate loads were investigated. The failure characteristics observed were the interaction of local and distortional buckling of the web and top flange for I-section beams and local buckling of the web and top flange in pure bending for box section beams. Then, finite element models were developed to simulate the tested specimens and validated against the experimental results in terms of the moment capacities and failure characteristics. Moreover, extensive parametric studies, including section height-to-width ratio and flange width-to-thickness ratio, were conducted with the validated numerical models to identify the key factors influencing built-up section beams. Finally, a simplified calculation method considering the reduction factor of the gross section modulus of the built-up section to predict the flexural moment capacities of cold-formed steel built-up I-section and box section beams was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call