Abstract

Abstract Possessing the reverse intersystem crossing (RISC) process, exciplex system has vast potential to enhance the efficiency of the white organic light-emitting diodes (WOLEDs). Nevertheless, general structures of the emitting layer always employ triple-doping in a long range (20–30 nm) which is complicated on fabrication progress. In this paper, based on the interfacial exciplex co-host, a flexible and simplified structure design is proposed to realize both warm and cold phosphorescent WOLEDs. In the two devices, with strategically locating the ultrathin orange phosphorescent emitting layers at two sides of the blue phosphorescent emitting layer (2 nm), respectively, multiple energy transfer channels are created to carry out highly efficient exciton utilization. Owing to the different energy transfer mechanisms, different organic emission ratios are obtained in two WOLEDs. The cold WOLEDs exhibited superior maximum external quantum efficiency (EQE), current efficiency (CE) and power efficiency (PE) of 28.37%, 72.17 cd A−1 and 87.17 lm W−1, respectively. Also, the warm WOLEDs showed high values as EQE of 23.80%, CE of 67.70 cd A−1 and PE of 81.10 lm W−1. Furthermore, both the devices presented rather stable color output in the luminance range from 2000 cd m−2 to 10000 cd m.−2

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call