Abstract

The application of wireless sensor networks (WSN) for the task of acoustic localization provides great opportunities for distributed cooperative tracking of sound sources in large areas. However WSNs are significantly more limited in terms of computational resources and power than typical computer systems. Therefore the methods applied for acoustic localization in WSN must be optimized for minimal resource consumption. This paper builds on the advances of Steered Response Power with Phase Transform (SRP-PHAT) optimization and proposes a further simplification in terms of additional minimization of the initial search volume. By using several linear microphone arrays we are able to estimate the initial region of sound source and reduce the number of computations by at least one order of magnitude. The results of several experiments on real signals confirm the achieved improvements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call