Abstract

We present a method for the construction of multiple levels of tetrahedral meshes approximating a trivariate function at different levels of detail. Starting with an initial, high-resolution triangulation of a three-dimensional region, we construct coarser representation levels by collapsing tetrahedra. Each triangulation defines a linear spline function, where the function values associated with the vertices are the spline coefficients. Based on predicted errors, we collapse tetrahedron in the grid that do not cause the maximum error to exceed a use-specified threshold. Bounds are stored for individual tetrahedra and are updated as the mesh is simplified. We continue the simplification process until a certain error is reached. The result is a hierarchical data description suited for the efficient visualization of large data sets at varying levels of detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.