Abstract

CRISPR/Cas9 is a powerful tool for genome editing. Several studies have been conducted to take the benefit of the versatile tool in the fission yeast Schizosaccharomyces pombe. However, the protocols for the CRISPR/Cas9 system proposed in previous studies are complicated in culture conditions compared to traditional genome editing methods. In this study, we introduced vectors for expression of sgRNA as well as Cas9, which employ natMX6 and bsdMX6 dominant selection markers. Using these materials, we examined nutritional conditions of cell cultures and found that nitrogen depletion introduced in previous methods does not affect the efficiency of genome editing. We found that bsdMX6-based plasmids enable us to skip any recovery steps before plating onto medium containing blasticidin S, unlike other antibiotic resistance selection markers. We thus propose easier transformation procedures with natMX6 and particularly bsdMX6 markers. We also simulate prescreening of mutants by genotyping with DNA endonucleases or proofreading PCR instead of relying on existing knowledge of mutant phenotypes. These materials and methods assist easy construction of S. pombe strains using CRISPR/Cas9, thereby accelerating seamless introduction of CRISPR/Cas9 to S. pombe researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.