Abstract

A method for combining decision procedures for several theories into a single decision procedure for their combination is described, and a simplifier based on this method is discussed. The simplifier finds a normal form for any expression formed from individual variables, the usual Boolean connectives, the equality predicate =, the conditional function if-then-else, the integers, the arithmetic functions and predicates +, -, and ≤, the Lisp functions and predicates car, cdr, cons, and atom, the functions store and select for storing into and selecting from arrays, and uninterpreted function symbols. If the expression is a theorem it is simplified to the constant true, so the simplifier can be used as a decision procedure for the quantifier-free theory containing these functions and predicates. The simplifier is currently used in the Stanford Pascal Verifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.