Abstract
Abstract At present, lithium-ion (Li-ion) cells are the core of electric vehicles (EVs). The complexity of electrochemical model makes on-line simulation difficult in electric vehicles. Thence, it is necessary to obtain a simplified model instantaneously under all operating conditions of the batteries. In this paper, simplification of electrochemical models of Li-ion battery to improve simulation and computational efficiency in EVs will be proposed. An isothermal pseudo-two-dimensional (P2D) model based on spatiotemporal dynamics of li-ion concentration, electrode potential in each phase, and the Butler-Volmer kinetics is developed. Since using traditional approaches to simulate the P2D model is computationally expensive, it has limited its use in EV's applications. Some methods can be used to decrease the number of Partial Differential Equations (PDEs) that must be solved simultaneously and enable faster computation while using limited resources. Moreover, an averaged electrode (AE) model and single particle (SP) model which derive from P2D model embodies high precision and fast simulation of battery performance for a range of working conditions. Finally, the simulation results of the AE and SP model are compared with Doyle-Fuller Newman (DFN) model and show that the SP model can reduce computational amount significantly while still retaining the accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.