Abstract

Using self-consistent field theory, we systematically explore the microphase separation in the class of two-component miktoarm star copolymers containing a single conjunction point between different blocks by considering an extended list of candidate microphases. We plot mean-field phase diagrams in the plane of segregation strength and composition for an array of representative star copolymers. Three principal phase diagram topologies, dictated by different phase stabilities, are exposed, displaying a hierarchy in complexity by increasing the molecular asymmetry. Our investigation indicates that the phase diagram topology depends on the ratios of arm numbers and Kuhn segment lengths, which highlights the role of the coordination number ratio between different polymers at the domain interface. These findings reveal the simplicity of the general phase behavior and suggest a complete list of stable microphases for the entire class, which provide useful insight into studying copolymers with more complicated architectures and conformational properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.