Abstract

Using self-consistent field theory, we systematically explore the microphase separation in the class of two-component miktoarm star copolymers containing a single conjunction point between different blocks by considering an extended list of candidate microphases. We plot mean-field phase diagrams in the plane of segregation strength and composition for an array of representative star copolymers. Three principal phase diagram topologies, dictated by different phase stabilities, are exposed, displaying a hierarchy in complexity by increasing the molecular asymmetry. Our investigation indicates that the phase diagram topology depends on the ratios of arm numbers and Kuhn segment lengths, which highlights the role of the coordination number ratio between different polymers at the domain interface. These findings reveal the simplicity of the general phase behavior and suggest a complete list of stable microphases for the entire class, which provide useful insight into studying copolymers with more complicated architectures and conformational properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call