Abstract

Let M be the interior of a connected, oriented, compact manifold V of dimension at least 2. If each path component of ∂V has amenable fundamental group, then we prove that the simplicial volume of M is equal to the relative simplicial volume of V and also to the geometric (Lipschitz) simplicial volume of any Riemannian metric on M whenever the latter is finite. As an application we establish the proportionality principle for the simplicial volume of complete, pinched negatively curved manifolds of finite volume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.