Abstract
Mathematical epidemiology that describes the complex dynamics on social networks has become increasingly popular. However, a few methods have tackled the problem of coupling network topology with complex incidence mechanisms. Here, we propose a simplicial susceptible-infected-recovered-susceptible (SIRS) model to investigate the epidemic spreading via combining the network higher-order structure with a nonlinear incidence rate. A network-based social system is reshaped to a simplicial complex, in which the spreading or infection occurs with nonlinear reinforcement characterized by the simplex dimensions. Compared with the previous simplicial susceptible-infected-susceptible (SIS) models, the proposed SIRS model can not only capture the discontinuous transition and the bistability of a complex system but also capture the periodic phenomenon of epidemic outbreaks. More significantly, the two thresholds associated with the bistable region and the critical value of the reinforcement factor are derived. We further analyze the stability of equilibrium points of the proposed model and obtain the condition of existence of the bistable states and limit cycles. This work expands the simplicial SIS models to SIRS models and sheds light on a novel perspective of combining the higher-order structure of complex systems with nonlinear incidence rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.