Abstract
While brain imaging tools like functional magnetic resonance imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data’s apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, that is, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain’s functional connectivity, that is, the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data’s topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, wefind that those that track topological features optimally distinguish experimentally defined brain states.
Highlights
One of the perennial questions in neuroscience concerns how neuronal signaling generates time-varying experiences
While many questions remain regarding how brain function emerges from multiregional interactions, advances in the mathematics of topological data analysis (TDA) may provide new insights
One tool from TDA, “persistent homology,” observes the occurrence and persistence of n-dimensional holes in a sequence of simplicial complexes extracted from a weighted graph
Summary
One of the perennial questions in neuroscience concerns how neuronal signaling generates time-varying experiences. Having access to high-quality whole-brain imaging data, the field of time-varying functional connectivity (TVFC, or chronnectomics; Calhoun, Miller, Pearlson, & Adalı, 2014), offers an empirical approach to characterizing time-varying patterns of mesoscopic neuronal communication (Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015; Hutchison et al, 2013). FC instead defines a geometry among brain regions by computing pairwise similarities from their long-term spontaneous activity measures (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995). While the similarity between regions is often calculated using the Pearson correlation among spontaneous neuroimaging signals (Biswal et al, 1995; Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011; Stoodley, Valera, & Schmahmann, 2010), in general, the idea of brain connectivity can apply to other methods of computing pairwise edges between nodes in the brain. The present study defines TVFC using instantaneous coherence
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.