Abstract
A model for quantized gravity coupled to matter in the form of a single scalar field is investigated in four dimensions. For the metric degrees of freedom we employ Regge's simplicial discretization, with the scalar field defined at the vertices of the four-simplices. We examine how the continuous phase transition found earlier, separating the smooth from the rough phase of quantized gravity, is influenced by the presence of scalar matter. A determination of the critical exponents seems to indicate that the effects of matter are rather small, unless the number of scalar flavors is large. Close to the critical point where the average curvature approaches zero, the coupling of matter to gravity is found to be weak. The nature of the phase diagram and the values for the critical exponents suggest that gravitational interactions increase with distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.