Abstract

Technological progress allows for an ever-faster acquisition of hyperspectral data, challenging the users to keep up with interpreting the recorded data. Matrix factorization, the representation of data sets by bases (or loads) and coefficient (or score) images is long used to support the interpretation of complex data sets. We propose in this publication Simplex Volume Maximization (SiVM) for the analysis of X-ray fluorescence (XRF) imaging data sets. SiVM selects archetypical data points that represents the data set and thus provides easily understandable bases, preserves the non-negative character of XRF data sets and has low demands concerning computing resources. We apply SiVM on an XRF data set of Hans Memling's Portrait of a man from the Lespinette family from the collection of the Mauritshuis (The Hague, NL) and discuss capabilities and shortcomings of SiVM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.