Abstract

To solve the (linear) second-order cone programmes (SOCPs), the primal–dual interior-point method has been studied extensively so far and said to be the most efficient method by many researchers. On the other hand, the simplex-type method for SOCP is much less spotlighted, while it still keeps an important position for linear programmes. In this paper, we apply the dual–simplex primal-exchange (DSPE) method, which was originally developed for solving linear semi-infinite programmes, to the SOCP by reformulating the second-order cone constraint as an infinite number of linear inequality constraints. Then, we show that the sequence generated by the DSPE method converges to the SOCP optimum under certain assumptions. In the numerical experiments, we consider the situation to solve multiple SOCPs with similar structures successively. Then we observe that our simplex-type method can be more efficient than the existing interior-point method when we apply the so-called ‘hot start’ technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.