Abstract

The feasibility of using a constrained Delaunay triangulation method for determining optimal flight trajectories of unmanned air vehicles in a constrained environment is explored. Current methods for developing optimal flight trajectories have yet to achieve computational times that allow for real-time implementation. The proposed method alleviates the dependency of problem specific parameters while eliminating constraints on the Non-Linear Program. Given an input of obstacles with n vertices, a constrained Delaunay triangulation is performed on the space. Converting the vertices of the triangulation to barycentric coordinates on a phased approach defines the state bounds and max time for each phase. With two-dimensional aircraft dynamics, direct orthogonal collocation methods are performed to compute the optimal flight trajectory. Results illustrate computational times and feasibility of Small Unmanned Aircraft System flight trajectories through polygon constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.