Abstract

A simple-to-implement weak-sense numerical method to approximate reflected stochastic differential equations (RSDEs) is proposed and analysed. It is proved that the method has the first order of weak convergence. Together with the Monte Carlo technique, it can be used to numerically solve linear parabolic and elliptic PDEs with Robin boundary condition. One of the key results of this paper is the use of the proposed method for computing ergodic limits, i.e. expectations with respect to the invariant law of RSDEs, both inside a domain in $\mathbb{R}^{d}$ and on its boundary. This allows to efficiently sample from distributions with compact support. Both time-averaging and ensemble-averaging estimators are considered and analysed. A number of extensions are considered including a second-order weak approximation, the case of arbitrary oblique direction of reflection, and a new adaptive weak scheme to solve a Poisson PDE with Neumann boundary condition. The presented theoretical results are supported by several numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.