Abstract

We study the dynamics of three elastic particles in a finite interval where two light particles are separated by a heavy "piston." The piston undergoes surprisingly complex motion that is oscillatory at short time scales but seemingly chaotic at longer scales. The piston also makes long-duration excursions close to the ends of the interval that stem from the breakdown of energy equipartition. Many of these dynamical features can be understood by mapping the motion of three particles on the line onto the trajectory of an elastic billiard in a highly skewed tetrahedral region. We exploit this picture to construct a qualitative random walk argument that predicts a power-law tail, with exponent -3/2, for the distribution of time intervals between successive piston crossings of the interval midpoint. These predictions are verified by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.