Abstract

We study in further detail particle models displaying a boundary-induced absorbing state phase transition [Deloubrière and van Wijland Phys. Rev. E 65, 046104 (2002) and Barato and Hinrichsen, Phys. Rev. Lett. 100, 165701 (2008)]. These are one-dimensional systems consisting of a single site (the boundary) where creation and annihilation of particles occur, and a bulk where particles move diffusively. We study different versions of these models and confirm that, except for one exactly solvable bosonic variant exhibiting a discontinuous transition and trivial exponents, all the others display nontrivial behavior, with critical exponents differing from their mean-field values, representing a universality class. Finally, the relation of these systems with a (0+1)-dimensional non-Markovian process is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.