Abstract

The long-standing 4.2σ muon g-2 anomaly may be the result of a new particle species which could also couple to dark matter and mediate its annihilations in the early Universe. In models where both muons and dark matter carry equal charges under a U(1)_{L_{μ}-L_{τ}} gauge symmetry, the corresponding Z^{'} can both resolve the observed g-2 anomaly and yield an acceptable dark matter relic abundance, relying on annihilations which take place through the Z^{'} resonance. Once the value of (g-2)_{μ} and the dark matter abundance are each fixed, there is very little remaining freedom in this model, making it highly predictive. We provide a comprehensive analysis of this scenario, identifying a viable range of dark matter masses between approximately 10 and 100MeV, which falls entirely within the projected sensitivity of several accelerator-based experiments, including NA62, NA64μ, M^{3}, and DUNE. Furthermore, portions of this mass range predict contributions to ΔN_{eff} which could ameliorate the tension between early and late time measurements of the Hubble constant, and which could be tested by stage 4 CMB experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.