Abstract

Thermal analysis methods - such as TGA, DSC analysis, DTA, and TDS analysis - have been used in many reports to determine the activation energy for hydride decomposition. In our preceding work, we showed that the dehydriding rate of Mg-5Ni samples obeyed the first-order law and the Kissinger equation could thus be used to determine the activation energy. In the present work, we used the Mg-5Ni samples after activation. We obtained Tm at different heating rates by finding the temperature at which the ratio of the desorbed hydrogen quantity Hd change to T change, dHd/dT, was the highest from the desorbed hydrogen quantity Hd versus temperature T curves. Tm’s at different heating rates were also obtained from points of inflection (Φ = dT/dt = 0) in temperature T versus time t curves. The activation energy for hydride decomposition was then calculated by applying Tm’s at different heating rates to the Kissinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.