Abstract

We encode the sequence of prime numbers into simple superpositions of identical waves, mimicking the archetypal prime number sieve of Eratosthenes. The primes are identified as zeros accompanied by phase singularities in a physically generated wave field for integer valued momenta. Similarly, primes are encoded in the diffraction pattern from a simple single aperture and in the harmonics of a single vibrating resonator. Further, diffraction physics connections to number theory reveal how to encode all Gaussian primes, twin primes, and how to construct wave fields with amplitudes equal to the divisor function at integer spatial frequencies. Remarkably, all of these basic diffraction phenomena reveal that the naturally irregular sequence of primes can arise from trivially ordered wave superpositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.