Abstract

A benzimidazole-based probe, BIPMA (2-(1H-benzo[d]imidazol-2-yl)-N-(pyridin-2-ylmethyl)aniline), was designed and synthesized to detect Cu2+ ions. BIPMA exhibited a fluorescent “turn-on” mechanism when bound to Cu2+ ions in an acetonitrile/water mixture (5:5, v/v, HEPES 10 mM, pH 7.4) owing to the synergistic effect of the chelation-enhanced fluorescence and internal charge-transfer mechanisms. Moreover, the BIPMA probe effectively detected nanomolar-range concentrations (0–400 nM) of Cu2+ ions in an aqueous system with a detection limit of 4.80 nM; this value is significantly lower than that set by the U.S. Environmental Protection Agency (≈20 μM). Additionally, BIPMA showed an ultrafast response to Cu2+ ions, with a maximum intensity achieved 25 s after adding Cu2+. Furthermore, BIPMA detected Cu2+ ions in solutions with a pH range of 5–11, without being influenced by pH, underscoring its applicability under various physiological conditions. Density functional theory studies revealed that internal charge transfer was responsible for emission. Finally, BIPMA effectively detected Cu2+ ions in real water samples and living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.