Abstract

This work proposes a new and simple design for the filtered Smith predictor (FSP), which belongs to a class of dead-time compensators (DTCs) and allows the handling of stable, unstable, and integrative processes. For this purpose, first, to use lower-order controller and filters, it is shown that it is not necessary to use the integral action in the primary controller, which is used to tune the set-point response; then, the FSP filters are designed to obtain the desired disturbance rejection, robustness, and noise attenuation. Using this procedure, it is possible to obtain a better compromise between performance and complexity than other solutions in the literature. Two simulation case studies are used to compare the obtained solution with some recently published results. A practical experiment involving a neonatal intensive care unit is also presented to illustrate the usefulness of the proposed DTC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.