Abstract

Nonfused-ring electron acceptors have attracted much attention in recent years due to their advantages of simple synthetic routes, high yields, low costs, reasonable power conversion efficiencies (PCEs), and so on. Herein, three simple A-π-D-π-A-type acceptors (DTC-BO-4F, DTS-BO-4F, and DTP-BO-4F) comprising a tricyclic fused-ring core, two 2,5-bis(alkyloxy)phenylene spacers, and two difluorinated terminal groups (DF-IC) were developed. Compared with DTS-BO-4F, DTC-BO-4F and DTP-BO-4F exhibit higher molar extinction coefficients, stronger crystallinity, and more orderly stacking. The PBDB-T:DTC-BO-4F-based blend film shows suitable phase separation and higher and more balanced charge mobilities. Finally, the photovoltaic devices based on DTC-BO-4F give an outstanding PCE of 13.26% with a small nonradiative voltage loss of 0.23 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.