Abstract

The thermodynamic performance of real irreversible cooling and refrigeration systems (chillers) can be summarized in simple rectangular temperature-entropy diagrams, in analogy to classic pedagogical examples for idealized reversible devices. The key to translating complex dissipative losses into this graphical framework is the process average temperature—a factor that can be calculated from nonintrusive experimental measurements, for converting entropy production into lost work. An uncomplicated thermodynamic model is used to transform the governing chiller performance equations into an easily-interpreted graph. Examples based upon actual data from commercial work-driven (reciprocating) and heat-driven (absorption) chillers are presented, and are used to highlight the predominance of internal dissipation in determining chiller efficiency. With the thermodynamic diagram representation, the relative roles of each irreversibility source, as well as the reversible and endoreversible limits, become transparent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.