Abstract

Polyanionic LiTi2(PO4)3 material with 3D framework structure is intensively investigated to be used in lithium ion batteries. However, the LiTi2(PO4)3-based materials suffer from poor electronic conductivity hindering the application as electrode active materials. This work describes an effective and simple strategy to synthesize LiTi2(PO4)3/C core–shell structure without the addition of external carbon sources. This approach is achieved by a simple one-step solid state reaction using organometallic salt as raw material. The as-prepared LiTi2(PO4)3 exhibits uniform and thin carbon coating on the particle surface. The electrochemical properties of the LiTi2(PO4)3/C composite are investigated, and the results demonstrate that the as-prepared LiTi2(PO4)3/C shows good cycling performance and rate capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call