Abstract

We study cost-sensitive learning of decision trees that incorporate both test costs and misclassification costs. In particular, we first propose a lazy decision tree learning that minimizes the total cost of tests and misclassifications. Then assuming test examples may contain unknown attributes whose values can be obtained at a cost (the test cost), we design several novel test strategies which attempt to minimize the total cost of tests and misclassifications for each test example. We empirically evaluate our tree-building and various test strategies, and show that they are very effective. Our results can be readily applied to real-world diagnosis tasks, such as medical diagnosis where doctors must try to determine what tests (e.g., blood tests) should be ordered for a patient to minimize the total cost of tests and misclassifications (misdiagnosis). A case study on heart disease is given throughout the paper.KeywordsDecision TreeTest StrategyTest CostSingle BatchMisclassification CostThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.