Abstract

To describe a novel and simple technique—simple targeted arterial rendering (STAR)—to visualize the fetal cardiac outflow tracts from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed a technique to image the outflow tracts by drawing three dissecting lines through the four-chamber view of the heart contained in a STIC volume dataset. Each line generated the following plane: (a) Line 1: ventricular septum en face with both great vessels (pulmonary artery anterior to the aorta); (b) Line 2: pulmonary artery with continuation into the longitudinal view of the ductal arch; and (c) Line 3: long-axis view of the aorta arising from the left ventricle. The pattern formed by all three lines intersecting approximately through the crux of the heart resembles a star. The technique was then tested in 50 normal fetal hearts at 15.3–40.4 weeks' gestation. To determine whether the technique could identify planes that departed from the normal images, we tested the technique in four cases with proven congenital heart defects (ventricular septal defect (VSD), transposition of great vessels, tetralogy of Fallot and pulmonary atresia with intact ventricular septum). The STAR technique was able to generate the intended planes in all 50 normal cases. In the abnormal cases, the STAR technique allowed identification of the VSD, demonstrated great vessel anomalies and displayed views that deviated from what was expected from the examination of normal hearts. This novel and simple technique can be used to visualize the outflow tracts and ventricular septum en face in normal fetal hearts. Inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease involving the great vessels and/or the ventricular septum. The STAR technique may simplify examination of the fetal heart and could reduce operator dependency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.