Abstract

AbstractThe Diels–Alder reaction of N-benzylcytisine with N-methyl- and N-benzylmaleimides is 100% endo-selective and gives the corresponding syn- and anti-diastereomers in 11–42% isolated yields. The studies of the reaction progress with LCMS and NMR along with detailed quantum chemical calculations revealed that some Diels–Alder adducts are kinetically and their isomers are thermodynamically controlled products. The Pd/C-catalyzed hydrogenation of benzyl-protected cytisine amine derivatives resulted in the removal of the benzyl group and the addition of hydrogen to the C=C double bond to give the corresponding secondary amines in 45–84% yield. The complete reduction of carbonyl groups in a cytisine derivative with LiAlH4 in THF under reflux afforded the respective tricyclic triamine. Quantum mechanical calculations for the mechanism of the Diels–Alder reaction between the simplest model compounds are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.