Abstract

We propose a novel method to treat polymeric scaffold surfaces for cell culture with water containing nanobubbles, called ultrafine bubbles (UFBs), with typical diameters less than 1 μm. A thin film of polystyrene (PS) prepared on a solid substrate was exposed to UFB water for 2 days at room temperature. The PS surface was characterized by X-ray photoelectron spectroscopy (XPS), static contact angle measurements in water, and atomic force microscopy (AFM). The surface chemical composition and wettability of PS films remained unchanged after treatment, so that aggregation states of PS at film surfaces remained unaltered by UFB water. On the other hand, after treatment, many UFBs were adsorbed on hydrophobic PS surfaces. To study the effect of UFBs on scaffold properties, the adsorption behavior of fibronectin, which is a typical extracellular matrix protein involved in cell adhesion and proliferation, was examined. While the effect on the adsorption was unclear, the structural denaturation of fibronectin was enhanced after UFB treatment, so that the proliferation of fibroblast cells on PS surfaces was promoted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.