Abstract

As problems with the overuse of radical prostate cancer (PCa) treatment are increasingly exposed, focal therapy represents the direction of low- or intermediate-risk PCa management in the future. However, inaccurate diagnosis and low controllability of focal therapy hinder its clinical translation. In this study, we develop simple structural cyclic arginine-glycine-aspartic (cRGD) peptide-modified and indocyanine green (ICG)-loaded microbubbles (cRGD-ICG-MBs) for ultrasound-photoacoustic imaging and multi-synergistic photothermal therapy (PTT) to address the above problems. Precise PCa diagnosis is achieved by molecular ultrasound imaging. cRGD-targeting and low-frequency ultrasound with an amplitude of 500kPa convert MBs into nanoparticles for enhanced ICG delivery. Alow frequency2500 kPa amplitude ultrasound enables temporary vasculature destruction, which minimizes heat loss during PTT. Specifically, ICG in the tumor region is 14-fold higher than the control, resulting in satisfactory PTT. Our study highlights that this theranostic strategy possesses considerable clinical translational potential, especially in mini-invasive and individualized PCa therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call