Abstract

This article proposes a new simulation strategy to support the calculation of the angular interval of the current supply to minimize the torque ripple in switched reluctance machines, focusing on the motor working condition. Supposing the best angular interval is strongly linked to the working condition of the machine, a formula is needed to calculate the boundary angles of the intervals of the current supply for each phase, starting from real-time speed and electromagnetic torque. Starting from the dataset of simulations made with this new strategy, linear regression was used to train a model that computes useful formulas. The aim of this research is to show how the application of simple calculations allows torque ripple and power losses to be reduced, i.e., RMS phase currents, without altering the geometry of the machine. Simulations on a virtual four-phase 8/6 SRM are carried out to verify the model’s feasibility and effectiveness, even though this strategy can be easily applied to all other configurations of SRMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call